3,038 research outputs found

    Implicit Copulas from Bayesian Regularized Regression Smoothers

    Full text link
    We show how to extract the implicit copula of a response vector from a Bayesian regularized regression smoother with Gaussian disturbances. The copula can be used to compare smoothers that employ different shrinkage priors and function bases. We illustrate with three popular choices of shrinkage priors --- a pairwise prior, the horseshoe prior and a g prior augmented with a point mass as employed for Bayesian variable selection --- and both univariate and multivariate function bases. The implicit copulas are high-dimensional, have flexible dependence structures that are far from that of a Gaussian copula, and are unavailable in closed form. However, we show how they can be evaluated by first constructing a Gaussian copula conditional on the regularization parameters, and then integrating over these. Combined with non-parametric margins the regularized smoothers can be used to model the distribution of non-Gaussian univariate responses conditional on the covariates. Efficient Markov chain Monte Carlo schemes for evaluating the copula are given for this case. Using both simulated and real data, we show how such copula smoothing models can improve the quality of resulting function estimates and predictive distributions

    Variational Bayes Estimation of Discrete-Margined Copula Models with Application to Time Series

    Full text link
    We propose a new variational Bayes estimator for high-dimensional copulas with discrete, or a combination of discrete and continuous, margins. The method is based on a variational approximation to a tractable augmented posterior, and is faster than previous likelihood-based approaches. We use it to estimate drawable vine copulas for univariate and multivariate Markov ordinal and mixed time series. These have dimension rTrT, where TT is the number of observations and rr is the number of series, and are difficult to estimate using previous methods. The vine pair-copulas are carefully selected to allow for heteroskedasticity, which is a feature of most ordinal time series data. When combined with flexible margins, the resulting time series models also allow for other common features of ordinal data, such as zero inflation, multiple modes and under- or over-dispersion. Using six example series, we illustrate both the flexibility of the time series copula models, and the efficacy of the variational Bayes estimator for copulas of up to 792 dimensions and 60 parameters. This far exceeds the size and complexity of copula models for discrete data that can be estimated using previous methods

    Bayesian Approaches to Copula Modelling

    Full text link
    Copula models have become one of the most widely used tools in the applied modelling of multivariate data. Similarly, Bayesian methods are increasingly used to obtain efficient likelihood-based inference. However, to date, there has been only limited use of Bayesian approaches in the formulation and estimation of copula models. This article aims to address this shortcoming in two ways. First, to introduce copula models and aspects of copula theory that are especially relevant for a Bayesian analysis. Second, to outline Bayesian approaches to formulating and estimating copula models, and their advantages over alternative methods. Copulas covered include Archimedean, copulas constructed by inversion, and vine copulas; along with their interpretation as transformations. A number of parameterisations of a correlation matrix of a Gaussian copula are considered, along with hierarchical priors that allow for Bayesian selection and model averaging for each parameterisation. Markov chain Monte Carlo sampling schemes for fitting Gaussian and D-vine copulas, with and without selection, are given in detail. The relationship between the prior for the parameters of a D-vine, and the prior for a correlation matrix of a Gaussian copula, is discussed. Last, it is shown how to compute Bayesian inference when the data are discrete-valued using data augmentation. This approach generalises popular Bayesian methods for the estimation of models for multivariate binary and other ordinal data to more general copula models. Bayesian data augmentation has substantial advantages over other methods of estimation for this class of models

    Bayesian Variable Selection for Non-Gaussian Responses: A Marginally Calibrated Copula Approach

    Get PDF
    We propose a new highly flexible and tractable Bayesian approach to undertake variable selection in non-Gaussian regression models. It uses a copula decomposition for the joint distribution of observations on the dependent variable. This allows the marginal distribution of the dependent variable to be calibrated accurately using a nonparametric or other estimator. The family of copulas employed are `implicit copulas' that are constructed from existing hierarchical Bayesian models widely used for variable selection, and we establish some of their properties. Even though the copulas are high-dimensional, they can be estimated efficiently and quickly using Markov chain Monte Carlo (MCMC). A simulation study shows that when the responses are non-Gaussian the approach selects variables more accurately than contemporary benchmarks. A real data example in the Web Appendix illustrates that accounting for even mild deviations from normality can lead to a substantial increase in accuracy. To illustrate the full potential of our approach we extend it to spatial variable selection for fMRI. Using real data, we show our method allows for voxel-specific marginal calibration of the magnetic resonance signal at over 6,000 voxels, leading to an increase in the quality of the activation maps

    Deep Distributional Time Series Models and the Probabilistic Forecasting of Intraday Electricity Prices

    Full text link
    Recurrent neural networks (RNNs) with rich feature vectors of past values can provide accurate point forecasts for series that exhibit complex serial dependence. We propose two approaches to constructing deep time series probabilistic models based on a variant of RNN called an echo state network (ESN). The first is where the output layer of the ESN has stochastic disturbances and a shrinkage prior for additional regularization. The second approach employs the implicit copula of an ESN with Gaussian disturbances, which is a deep copula process on the feature space. Combining this copula with a non-parametrically estimated marginal distribution produces a deep distributional time series model. The resulting probabilistic forecasts are deep functions of the feature vector and also marginally calibrated. In both approaches, Bayesian Markov chain Monte Carlo methods are used to estimate the models and compute forecasts. The proposed deep time series models are suitable for the complex task of forecasting intraday electricity prices. Using data from the Australian National Electricity Market, we show that our models provide accurate probabilistic price forecasts. Moreover, the models provide a flexible framework for incorporating probabilistic forecasts of electricity demand as additional features. We demonstrate that doing so in the deep distributional time series model in particular, increases price forecast accuracy substantially

    Automated potentiometric techniques for the on-site monitoring of anion concentrations in water

    Get PDF
    Students supported: 2 Grad Students, 2 Undergraduate StudentsCharacteristics of several of the new non-glass ion-selective electrodes and of several reference electrodes were studied in detail. The most significant finding of the research was the development of a new high accuracy standard addition technique for the potentiometric determination of nitrate ion in a cell without liquid junction using the fluoride ion-selective electrode as a reference. This method eliminates the liquid junction and dilution and activity coefficient changes cancel. The standard addition technique with the fluoride electrode as a reference is applicable to all monovalent anions for which an electrode is available and enables the determination of anion concentrations to within 1 percent relative accuracy. Low temperature potentiometric titrations of perchlorate and tetrafluoroborate ions were investigated and found to give very high accuracy and reasonably good sensitivity for these ions. Tetraphenylarsonium chloride was used as a titrant for perchlorate and tetrafluoroborate. The application of the nitrate ion-selective electrode to following nitrate ion concentration in microbial cultures was investigated. It was found to be useful for following nitrate ion reduction in situ.Project # B-023-MO Agreement # 14-01-0001-191
    • …
    corecore